以下为《数学建模四大模型总结》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
四类基本模型
优化模型
数学规划模型
线性规划、整数线性规划、非线性规划、多目标规划、动态规划。
微分方程组模型
阻滞增长模型、SARS传播模型。
图论与网络优化问题
最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。
概率模型
决策模型、随机存储模型、随机人口模型、报童问题、Markov链模型。
组合优化经典问题
多维背包问题(MKP)
背包问题:个物品,对物品,体积为,背包容量为。如何将尽可能多的物品装入背包。
多维背包问题:个物品,对物品,价值为,体积为,背包容量为。如何选取物品装入背包,是背包中物品的总价值最大。
多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。该问题属于难问题。
二维指派问题(QAP)
工作指派问题:个工作可以由个工人分别完成。工人完成工作的时间为。如何安排使总工作时间最小。
二维指派问题(常以机器布局问题为例):台机器要布置在个地方,机器与之间的物流量为,位置与之间的距离为,如何布置使费用最小。
二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。
旅行商问题(TSP)
旅行商问题:有个城市,城市与之间的距离为,找一条经过个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。
车辆路径问题(VRP)
车辆路径问题(也称车辆计划):已知个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。
TSP问题是VRP问题的特例。
车间作业调度问题(JSP)
车间调度问题:存在个工作和台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。如何求得从第一个操作开始到最后一个操作结束的最小时间间隔。
分类模型
判别分析是在已知研究对象分成若干类型并已经取得各种类型的一批已知样本的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析。
聚类分析则是给定的一批样品,要划分的类型实现并不知道,正需要通过局内分析来给以确定类型的。
判别分析
距离判别法
基本思想:首先根据已知分类的数据,分别计算各类的重心即分组(类)的均值,判别准则是对任给的一次观测,若它与第类的重心距离最近,就认为它来自第类。
至于距离的测定,可以根据实际需要采用欧氏距离、马氏距离、明科夫距离等。
Fisher判别法
基本思想:从两个总体中抽取具有个指标的样品观测数据,借助方差分析的思想构造一个判别函数或称判别式。其中系数确定的原则是使两组间的区别最大,而使每个组内部的离差最小。
对于一个新的样品,将它的p个指标值代人判别式中求出 y 值,然后与判别临界值(或称分界点(后面给出)进行比较,就可以判别它应属于哪一个总体。在两个总体先验概率相等的假设下,判别临界值一般取:
最后,用统计量来检验判别效果,若则认为判别有效,否则判别无效。
以上描述的是两总体判别,至于多总体判别方法则需要加以扩展。
Fisher判别法随着总体数的增加,建立的判别式也增加,因而计算比较复杂。
Bayes判别法
基本思想:假定对所研究的对象有一定的认识,即假设个总体中,第个总体的先验 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 了其它有用的信息。为了充分发挥各预测模型的优势,对于同一预测问题,往往可以采用多种预测方法进行预测。不同的预测方法往往能提供不同的有用信息,组合预测将不同预测模型按一定方式进行综合。根据组合定理,各种预测方法通过组合可以尽可能利用全部的信息,尽可能地提高预测精度,达到改善预测性能的目的。
优化组合预测有两类概念,一是指将几种预测方法所得的预测结果,选取适当的权重进行加权平均的一种预测方法,其关键是确定各个单项预测方法的加权系数;二是指在几种预测方法中进行比较,选择拟合度最佳或标准离差最小的预测模型作为最优模型进行预测。组合预测是在单个预测模型不能完全正确地描述预测量的变化规律时发挥其作用的。
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《数学建模四大模型总结》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。