以下为《java面试基础知识点》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
第一部分:JVM
JVM的结构:
Class loader(类装载子系统) :根据给定的全限定名类名(如:java.lang.Object)来装载class文件***。
Execution engine(执行引擎子系统) :执行class的指令
Runtime data area(*** :即我们常说的JVM的内存
Native Interface(本地接口组件) :与native lib交互,是其它编程语言交互的接口
数据区:
1、堆
堆解决的是对象实例存储的问题,垃圾回收器管理的主要区域。
2、方法区
方法区可以认为是堆的一部分,用于存储已被虚拟机加载的信息,常量、静态变量、即时编译器编译后的代码。
3、栈
栈解决的是程序运行的问题,栈里面存的是栈帧,栈帧里面存的是局部变量表、操作数栈、动态链接、方法出口等信息。
栈帧
每个方法从调用到执行的过程就是一个栈帧在虚拟机栈中入栈到出栈的过程。
局部变量表
用于保存函数的参数和局部变量。
操作数栈
操作数栈又称操作栈,大多数指令都是从这里弹出数据,执行运算,然后把结果压回操作数栈。
4、本地方法栈
与栈功能相同,本地方法栈执行的是本地方法,一个Java调用非Java代码的接口。
5、程序计数器(PC寄存器)
程序计数器中存放的是当前线程所执行的字节码的行数。JVM工作时就是通过改变这个计数器的值来选取下一个需要执行的字节码指令。
什么是双亲委派模型:
当需要加载一个类的时候,子类加载器并不会马上去加载,而是依次去请求父类加载器加载,一直往上请求到最高类加载器:启动类加载器。当启动类加载器加载不了的时候,依次往下让子类加载器进行加载。当达到最底下的时候,如果还是加载不到该类,就会出现ClassNotFound的情况。
优点:避免重复加载类、保证程序的安全性。
如何不走双亲委派机制:
重写ClassLoader类中的LoadClass方法。
一个类的静态块是否可能被执行两次?
可以。双亲委派机制。
为什么会有自定义类加载器?
1、一方面是由于java代码很容易被反编译,如果需要对自己的代码加密的话,可以对编译后的代码进行加密,然后再通过实现自己的自定义类加载器进行解密,最后再加载。
2、另一方面也有可能从非标准的来源加载代码,比如从网络来源,那就需要自己实现一个类加载器,从指定源进行加载。
类加载的过程:
验证
主要是为了保证加载进来的字节流符合虚拟机规范,不会造安.成全错误。
准备
主要是为类变量(注意,不是实例变量)分配内存,并且赋予初值。
解析
将常量池内的符号引用替换为直接引用的过程。
初始化
这个阶段主要是对类变量初始化,是执行类构造器的过程。
java 中都有哪些引用类型?
强引用:只要强引用存在,垃圾回收器将永远不会回收被引用的对象,哪怕内存不足时,JVM也会直接抛出OutOfMemoryError,不会去回收。如果想中断强引用与对象之间的联系,可以显示的将强引用赋值为null,这样一来,JVM就可以适时的回收对象了
弱引用:弱引用的引用强度比软引用要更弱一些,无论内存是否足够,只要 JVM 开始进行垃圾回收,那些被弱引用关联的对象都会被回收。在 JDK1.2 之后,用 java.lang.ref.WeakReference 来表示弱引用。
软引用:软引用是用来描述一些非必需但仍有用的对象。在内存足够的时候,软引用对象不会被回收,只有在内存不足时,系统则会回收软引用对象,如果回收了软引用对象之后仍然没有足够的内存,才会抛出内存溢出异常。这种特性常常被用来实现缓存技术,比如网页缓存,图片缓存等。
虚引用:虚引用是最弱的一种引用关系,如果一个对象仅持有虚引用,那么它就和没有任何引用一样,它随时可能会被回收。
说一下 jvm 有哪些垃圾回收算法?
1.标记-清除算法
分为标记和清除两个阶段,首先标记出所有需要回收的对象,标记完成后统一回收所有被标记的对象
缺点:标记和清除两个过程效率都不高;标记清除之后会产生大量不连续的内存碎片。
2.复制算法
把内存分为大小相等的两块,每次存储只用其中一块,当这一块用完了,就把存活的对象全部复制到另一块上,同时把使用过的这块内存空间全部清理掉,往复循环,如下图。
缺点:实际可使用的内存空间缩小为原来的一半,比较适合。
3.标记-整理算法
先对可用的对象进行标记,然后所有被标记的对象向一段移动,最后清除可用对象边界以外的内存,如下图。
4.分代收集算法
把堆内存分为新生代和老年代,新生代又分为 Eden 区、From Survivor 和 To Survivor。一般新生代中的对象基本上都是朝生夕灭的,每次只有少量对象存活,因此采用复制算法,只需要复制那些少量存活的对象就可以完成垃圾收集;老年代中的对象存活率较高,就采用标记-清除和标记-整理算法来进行回收。
如何标记:
引用计数法
引用计数法通过在对象头分配一个字段,用来存储该对象引用计数。一旦该对象被其他对象引用,计数加 1。如果这个引用失效,计数减 1。当引用计数值为 0 时,代表这个对象已不再被引用,可以被回收。
可达性分析法
这个算法首先需要按照规则查找当前活跃的引用,将其称为 GC Roots。接着将 GC Roots 作为根节点出发,遍历对象引用关系图,将可以遍历(可达)的对象标记为存活,其余对象当做无用对象。
垃圾收集器:
Serial:最早的单线程串行垃圾回收器。
Serial Old:Serial 垃圾回收器的老年版本,同样也是单线程的,可以作为 CMS 垃圾回收器的备选预案。
ParNew:是 Serial 的多线程版本。 Parallel 和 ParNew 收集器类似是多线程的,但 Parallel 是吞吐量优先的收集器,可以牺牲等待时间换取系统的吞吐量。
Parallel Old 是 Parallel 老生代版本,Parallel 使用的是复制的内存回收算法,Parallel Old 使用的是标记-整理的内存回收算法。
CMS:一种以获得最短停顿时间为目标的收集器,非常适用 B/S 系统。
G1:一种兼顾吞吐量和停顿时间的 GC 实现,是 JDK 9 以后的默认 GC 选项。
CMS:
CMS收集器是一种以获取最短回收停顿时间为目标的收集器。CMS收集器是基于标记-清除算法实现的,是一种老年代收集器,通常与ParNew一起使用。
CMS的垃圾收集过程分为4步:
初始标记:需要“Stop the World”,初始标记仅仅只是标记一下GC Root能直接关联到的对象,速度很快。
并发标记:是主要标记过程,这个标记过程是和用户线程并发执行的。
重新标记:需要“Stop the World”,为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录(停顿时间比初始标记长,但比并发标记短得多)。
并发清除:和用户线程并发执行的,基于标记结果来清理对象。
那么问题来了,如果在重新标记之前刚好发生了一次MinorGC,会不会导致重新标记阶段Stop the World时间太长?
答:不会的,在并发标记阶段其实还包括了一次并发的预清理阶段,虚拟机会主动等待年轻代发生垃圾回收,这样可以将重新标记对象引用关系的步骤放在并发标记阶段,有效降低重新标记阶段Stop The World的时间。
CMS垃圾回收器的优缺点分析:
CMS以降低垃圾回收的停顿时间为目的,很显然其具有并发收集,停顿时间低的优点。
缺点主要包括如下:
对CPU资源非常敏感,因为并发标记和并发清理阶段和用户线程一起运行,当CPU数变小时,性能容易出现问题。
收集过程中会产生浮动垃圾,所以不可以在老年代内存不够用了才进行垃圾回收,必须提前进行垃圾收集。通过参数-XX:CMSInitiatingOccupancyFraction的值来控制内存使用百分比。如果该值设置的太高,那么在CMS运行期间预留的内存可能无法满足程序所需,会出现Concurrent Mode Failure失败,之后会临时使用Serial Old收集器做为老年代收集器,会产生更长时间的停顿。
标记-清除方式会产生内存碎片,可以使用参数-XX:UseCMSCompactAtFullCollection来控制是否开启内存整理(无法并发,默认是开启的)。参数-XX:CMSFullGCsBeforeCompaction用于设置执行多少次不压缩的Full GC后进行一次带压缩的内存碎片整理(默认值是0)。
接下来,我们先看下上边介绍的浮动垃圾是怎么产生的吧。
浮动垃圾:
由于在应用运行的同时进行垃圾回收,所以有些垃圾可能在垃圾回收进行完成时产生,这样就造成了“Floating Garbage”,这些垃圾需要在下次垃圾回收周期时才能回收掉。所以,并发收集器一般需要20%的预留空间用于这些浮动垃圾。
分代垃圾回收器是怎么工作的?
分代回收器有两个分区:老生代和新生代,新生代默认的空间占比总空间的 1/3,老生代的默认占比是 2/3。
新生代使用的是复制算法,新生代里有 3 个分区:Eden、To Survivor、From Survivor,它们的默认占比是 8:1:1,它的执行流程如下:
把 Eden + From Survivor 存活的对象放入 To Survivor 区;
清空 Eden 和 From Survivor 分区;
From Survivor 和 To Survivor 分区交换,From Survivor 变 To Survivor,To Survivor 变 From Survivor。
每次在 From Survivor 到 To Survivor 移动时都存活的对象,年龄就 +1,当年龄到达 15(默认配置是 15)时,升级为老生代。大对象也会直接进入老生代。
老生代当空间占用到达某个值之后就会触发全局垃圾收回,一般使用标记整理的执行算法。以上这些循环往复就构成了整个分代垃圾回收的整体执行流程。
新生代垃圾回收器和老年代垃圾回收器都有哪些?有什么区别?
新生代回收器:Serial、ParNew、Parallel Scavenge
老年代回收器:Serial Old、Parallel Old、CMS
整堆回收器:G1 新生代垃圾回收器一般采用的是复制算法,复制算法的优点是效率高,缺点是内存利用率低;老年代回收器一般采用的是标记-整理的算法进行垃圾回收。
jvm调优配置:
XX比X的稳定性更差,并且版本更新不会进行通知和说明。
1、-Xms
?? ?s为strating,表示堆内存起始大小
2、-Xmx
?? ?x为max,表示最大的堆内存
(一般来说-Xms和-Xmx的设置为相同大小,因为当heap自动扩容时,会发生内存抖动,影响程序的稳定性)
3、-Xmn
?? ?n为new,表示新生代大小
(-Xss:规定了每个线程虚拟机栈(堆栈)的大小)
4、-XX:SurvivorRator=8?
?? ?表示堆内存中新生代、老年代和永久代的比为8:1:1
5、-XX:PretenureSizeThreshold=***
?? ?表示当创建(new)的对象大于3M的时候直接进入老年代
6、-XX:MaxTenuringThreshold=15?? ?
?? ?表示当对象的存活的年龄(minor gc一次加1)大于多少时,进入老年代
7、-XX:-DisableExplicirGC
?? ?表示是否(+表示是,-表示否)打开GC日志
JAVA基础:
哈希冲突:
当输入样本量足够大时,不相同的输入是会产生相同输出的,也就是形成哈希冲突。
hashCode()与 equals()
面试官可能会问你:“你重写过?hashcode?和?equals么,为什么重写?equals?时必须重写?hashCode?方法?”
1)hashCode()介绍:
hashCode()?的作用是获取哈希码,也称为散列码;它实际上是返回一个 int 整数。这个哈希码的作用是确定该对象在哈希表中的索引位置。hashCode()定义在 JDK 的?Object?类中,这就意味着 Java 中的任何类都包某某?hashCode()?函数。另外需要注意的是:?Object?的 hashcode 方法是本地方法,也就是用 c 语言或 c++ 实现的,该方法通常用来将对象的 内存地址 转换为整数之后返回。
public native int hashCode();
散列表存储的是键值对(key-value),它的特点是:能根据“键”快速的检索出对应的“值”。这其中就利用到了散列码!(可以快速找到所需要的对象)
2)为什么要有 hashCode?
我们以“HashSet?如何检查重复”为例子来说明为什么要有 hashCode?
当你把对象加入?HashSet?时,HashSet?会先计算对象的 hashcode 值来判断对象加入的位置,同时也会与其他已经加入的对象的 hashcode 值作比较,如果没有相符的 hashcode,HashSet?会假设对象没有重复出现。但是如果发现有相同 hashcode 值的对象,这时会调用?equals()?方法来检查 hashcode 相等的对象是否真的相同。如果两者相同,HashSet?就不会让其加入操作成功。如果不同的话,就会重新散列到其他位置。(摘自我的 Java 启蒙书《Head First Java》第二版)。这样我们就大大减少了 equals 的次数,相应就大大提高了执行速度。
3)为什么重写?equals?时必须重写?hashCode?方法?
如果两个对象相等,则 hashcode 一定也是相同的。两个对象相等,对两个对象分别调用 equals 方法都返回 true。但是,两个对象有相同的 hashcode 值,它们也不一定是相等的 。因此,equals 方法被覆盖过,则?hashCode?方法也必须被覆盖。
hashCode()的默认行为是对堆上的对象产生独特值。如果没有重写?hashCode(),则该 class 的两个对象无论如何都不会相等(即使这两个对象指向相同的数据)
八种数据类型:
java 中操作字符串都有哪些类?它们之间有什么区别
String、StringBuffer、StringBuilder
String : final修饰,String类的方法都是返回new String。即对String对象的任何改变都不影响到原对象,对字符串的修改操作都会生成新的对象。
StringBuffer : 对字符串的操作的方法都加了synchronized,保证线程安全。
StringBuilder : 不保证线程安全,在方法体内需要进行字符串的修改操作,可以new StringBuilder对象,调用StringBuilder对象的append、replace、delete等方法修改字符串。
String str="i"与 String str=new String(“i”)一样吗?
String str="i"; 因为String 是final类型的,所以“i”应该是在常量池。
而new String("i");则是新建对象放到堆内存中。
String 类的常用方法都有那些?
indexOf():返回指定字符的索引。
charAt():返回指定索引处的字符。
replace():字符串替换。
trim():去除字符串两端空白。
split():分割字符串,返回一个分割后的字符串数组。
getBytes():返回字符串的 byte 类型数组。
length():返回字符串长度。
toLowerCase():将字符串转成小写字母。
toUpperCase():将字符串转成大写字符。
substring():截取字符串。
equals():字符串比较。
Collection 和 Collections 有什么区别?
Collection
Collection是最基本的集合接口,一个Collection代表一组Object,即Collection的元素。它的直接继承接口有List,Set和Queue。
Collections
java.util.Collections,是不属于java的集合框架的,它是集合类的一个工具类/帮助类。此类不能被实例化,?服务于java的Collection框架。
它包某某关集合操作的静态多态方法,实现对各种集合的搜索、排序、线程安全等操作。运用:排序、最大最小值、反转、替换、拷贝等。
对Null key 和Null value的支持不同
Hashtable既不支持Null key也不支持Null value。Hashtable的put()方法的注释中有说明.当key为Null时,调用put() 方法,运行到下面这一步就会抛出空指针异常。因为拿一个Null值去调用方法了。当value为null值时,Hashtable对其做了限制,运行到下面这步也会抛出空指针异常。
线程安全性不同
Hashtable是线程安全的,它的每个方法中都加入了Synchronize方法。在多线程并发的环境下,可以直接使用Hashtable,不需要自己为它的方法实现同步
HashMap不是线程安全的,在多线程并发的环境下,可能会产生死锁等问题。具体的原因在下一篇文章中会详细进行分析。使用HashMap时就必须要自己增加同步处理,
虽然HashMap不是线程安全的,但是它的效率会比Hashtable要好很多。这样设计是合理的。在我们的日常使用当中,大部分时间是单线程操作的。HashMap把这部分操作解放出来了。当需要多线程操作的时候可以使用线程安全的ConcurrentHashMap。ConcurrentHashMap虽然也是线程安全的,但是它的效率比Hashtable要高好多倍。因为ConcurrentHashMap使用了分段锁,并不对整个数据进行锁定。
初始容量大小和每次扩充容量大小的不同
Hashtable默认的初始大小为11,之后每次扩充,容量变为原来的2n+1。HashMap默认的初始化大小为16。之后每次扩充,容量变为原来的2倍。
创建时,如果给定了容量初始值,那么Hashtable会直接使用你给定的大小,而HashMap会将其扩充为2的幂次方大小。也就是说Hashtable会尽量使用素数、奇数。而HashMap则总是使用2的幂作为哈希表的大小。
之所以会有这样的不同,是因为Hashtable和HashMap设计时的侧重点不同。Hashtable的侧重点是哈希的结果更加均匀,使得哈希冲突减少。当哈希表的大小为素数时,简单的取模哈希的结果会更加均匀。而HashMap则更加关注hash的计算效率问题。在取模计算时,如果模数是2的幂,那么我们可以直接使用位运算来得到结果,效率要大大高于做除法。HashMap为了加快hash的速度,将哈希表的大小固定为了2的幂。当然这引入了哈希分布不均匀的问题,所以HashMap为解决这问题,又对hash算法做了一些改动。这从而导致了Hashtable和HashMap的计算hash值的方法不 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 SERIALIZABLE)从上往下,隔离强度逐渐增强,性能逐渐变差。采用哪种隔离级别要根据系统需求权衡决定,其中,可重复读是 MySQL 的默认级别。
事务隔离其实就是为了解决上面提到的脏读、不可重复读、幻读这几个问题,下面展示了 4 种隔离级别对这三个问题的解决程度。
一、事务的基本要素(ACID)
1、原子性(Atomicity):事务开始后所有操作,要么全部做完,要么全部不做,不可能停滞在中间环节。事务执行过程中出错,会回滚到事务开始前的状态,所有的操作就像没有发生一样。也就是说事务是一个不可分割的整体,就像化学中学过的原子,是物质构成的基本单位。
?2、一致性(Consistency):事务开始前和结束后,数据库的完整性约束没有被破坏 。比如A向B转账,不可能A扣了钱,B却没收到。
3、隔离性(Isolation):同一时间,只允许一个事务请求同一数据,不同的事务之间彼此没有任何干扰。比如A正在从一张银行卡中取钱,在A取钱的过程结束前,B不能向这张卡转账。
4、持久性(Durability):事务完成后,事务对数据库的所有更新将被保存到数据库,不能回滚
[文章尾部最后500字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《java面试基础知识点》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。