以下为《人脸识别技术及研究关键问题》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
人脸识别技术及研究关键问题
基本概念:
人脸识别就是对于输入的人脸图像或者视频,首先判断其中是否存在人脸,如果存在人脸,则进一步的给出每个人脸的位置、大小和各个主要面部器官的位置信息,并依据这些信息,进一步提取每个人脸中所蕴含的身份特征,并将其与已知人脸库中的人脸进行对比,从而识别每个人脸的身份。人脸识别的过程可以分为以下三个部分:1、人脸检测:判断输入图像中是否存在人脸,如果有,给出每个人脸的位置,大小;2、面部特征定位:对找到的每个人脸,检测其主要器官的位置和形状等信息;3、人脸比对:根据面部特征定位的结果,与库中人脸对比,判断该人脸的身份信息;
从应用的角度,人脸识别包括两大类:1、人脸身份识别:即根据人脸图像识别出人物的身份,解决是谁的问题;2、人脸身份确认/验证:判断图像中的人脸是否是指定的人,即解决是不是某人的问题;
人脸识别技术具有广泛的应用前景,在国家安全、军事安全和公共安全领域,智能门禁、智能视频监控、公安布控、海关身份验证、司机驾照验证等是典型的应用;在民事和经济领域,各类银行卡、金融卡、信用卡、储蓄卡的持卡人的身份验证,社会保险人的身份验证等具有重要的应用价值;在家庭娱乐等领域,人脸识别也具有一些有趣有益的应用,比如能够识别主人身份的智能玩具、家政机器人,具有真实面像的虚拟游戏玩家等等。
研究方向:
1、人脸检测与跟踪技术
显然,要识别图像中出现的人脸,首要的一点就是要找到人脸。人脸检测与跟踪研究的就是如何从静态图片或者视频序列中找出人脸,如果存在人脸,则输出人脸的数目、每个人脸的位置及其大小。人脸跟踪就是要在检测到人脸的基础上,在后续的人脸图像中继续捕获人脸的位置及其大小等性质。人脸检测是人脸身份识别的前期工作。同时,人脸检测作为完整的单独功能模块,在智能视频监控、视频检索和视频内容组织等方面有直接的应用。 我们课题组提出并实现了一个复杂背景下的多级结构的人脸检测与跟踪系统,其中采用了模板匹配、特征子脸、彩色信息等人脸检测技术,能够检测平面内旋转的人脸,并可以跟踪任意姿态的运动的人脸。简述如下:这种检测方法是一个两级结构的算法,对于扫描窗口,首先和人脸模板进行匹配,如果匹配,那么将其投影到人脸子空间,由特征子脸技术判断是否为人脸。模板匹配的方法是:按照人脸特征,将人脸图像划分成14个不同区域,用每个区域的灰度统计值表示该区域,用整个样本的灰度平均值归一化,从而得到用特征向量表示的人脸模板。通过非监督学习的方法对训练样本聚类,得到参考模板族。将测试图像的模板与参考模板在某种距离测度下匹配,通过阈值判断匹配程度。特征子脸技术的基本思想是:从统计的观点,寻找人脸图像分布的基本元素,即人脸图像样本集协方差矩阵的特征向量,以此近似地表征人脸图像。这些特征向量称为特征脸(Eigenface)。实际上,特征脸反映了隐含在人脸样本集合内部的信息和人脸的结构关系。将眼睛、面颊、下颌的样本集协方差矩阵的特征向量称为特征眼、特征颌和特征唇,统称特征子脸。特征子脸在相应的图像空间中张成子空间,称为子脸空间。计算出测试图像窗口在子脸空间的投影距离,若窗口图像满足阈值比较条件,则判断其为人脸。 课题组还在人脸重心模板技术的基础上改进并实现了一个复杂背景中、准实时的快速检测人脸的系统。设计了人脸重心模板以实现人脸快速的定位,这些人脸模板具有多尺度的检测功能,能适应于检测处于复杂背景中任何位置的不同大小的人脸;人脸重心模板上的重心点对应于人脸模式上的各个器官(双眉、双眼、鼻和嘴),重心点之间动态的二维空间约束关系适应于检测 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 法中等。第二种思路是基于单张视图生成多角度视图,可以在只能获取用户单张照片的情况下合成该用户的多个学习样本,可以解决训练样本较少的情况下的多姿态人脸识别问题,从而改善识别性能。 第三种思路是基于姿态不变特征的方法,即寻求那些不随姿态的变化而变化的特征。我们的思路是采用基于统计的视觉模型,将输入姿态图像校正为正面图像,从而可以在统一的姿态空间内作特征的提取和匹配。 因此,基于单姿态视图的多姿态视图生成算法将是我们要研究的核心算法,我们的基本思路是采用机器学习算法学习姿态的2D变化模式,并将一般人脸的3D模型作为先验知识,补偿2D姿态变换中不可见的部分,并将其应用到新的输入图像上去。
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]
以上为《人脸识别技术及研究关键问题》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。