人工智能小论文

本文由用户“一一一一盏”分享发布 更新时间:2022-12-16 23:43:12 举报文档

以下为《人工智能小论文》的无排版文字预览,完整格式请下载

下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

基本概念

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学,是计算机科学的一个分支。人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。研究如何让计算机去完成以往需要人的智力才能胜任的工作,也就是研究如何应用计算机的软硬件来模拟人类某些智能行为的基本理论、方法和技术。该领域的研究包括语音识别、图像识别、机器人、自然语言处理、智能搜索和专家系统等。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也有可能超过人的智能。

机器学习是一门多学科交叉专业,涵盖概率论知识,统计学知识,近似理论知识和复杂算法知识,使用计算机作为工具并致力于真实实时的模拟人类学习方式,并将现有内容进行知识结构划分来有效提高学习效率。是研究怎样使用计算机模拟或实现人类学习活动的科学,是人工智能中最具智能特征,最前沿的研究领域之一[1]。

发展历史

机器学习最早可以追溯到对人工神经网络的研究。1943年,Warren McCulloch和Wallter Pitts提出了神经网络层次结构模型,确立了神经网络的计算模型理论,从而为机器学习的发展奠定了基础。1950年,“人工智能之父”图灵提出了著名的“图灵测试”,使人工智能成为了科学领域的一个重要研究课题。

1957年,康奈尔大学教授Frank Rosenblatt提出了Perceptron概念,并且首次用算法精确定义了自组织自学习的神经网络数学模型,设计出了第一个计算机神经网络。这个机器学习算法成为了神经网络模型的开山鼻祖。1959年美国IBM公司的A.M.Samuel设计了一个具有学习能力的跳棋程序,曾经战胜了美国保持8年不败的冠军。这个程序向人们初步展示了机器学习的能力。

1962年,Hubel和Wiesel发现了猫脑皮层中独特的神经网络结构可以有效降低学习的复杂性,从而提出著名的Hubel-Wiese生物视觉模型,这之后提出的神经网络模型均受此启迪。

1969年,人工智能研究的先驱者Marvin Minsky和Seymour Papert出版了对机器学习研究有深远影响的著作《Perceptron》,其中对于机器学习基本思想的论断:解决问题的算法能力和计算复杂性,影响深远且延续至今。

1980年夏,在美国卡内基梅某某大学举行了第一届机器学习国际研讨会,标志着机器学习研究在世界范围内兴起。1986年,《Machine Learning》创刊,标志着机器学习逐渐为世人瞩目并开始加速发展。

1986年,Rumelhart,Hinton和Williams联合在《自然》杂志发表了著名的反向传播算法(BP)。1989年,美国贝尔实验室学者Yann和LeCun教授提出了目前最为流行的卷积神经网络(CNN)计算模型,推导出基于BP算法的高效训练方法,并成功地应用于英文手写体识别。

进入90年代,多浅层机器学习模型相继问世,诸如逻辑回归,支持向某某等,这些机器学习算法的共性是数学模型为凸代价函数的最优化问题,理论分析相对简单,容易从训练样本中学习到内在模式,来完对象识别,人物分配等初级智能工作。

2006年,机器学习领域泰斗Geoffrey Hinton和Ruslan Salakhutdinov发表文章,提出了深度学习模型。主要论点包括:多个隐层的人工神经网络具有良好的特征学习能力;通过逐层初始化来克服训练的难度,实现网络整体调优。这个模型的提出,开启了深度网络机器学习的新时代。2012年, 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 基础的缺乏以及硬件的差距,即使有许多算法仍无法从根本上解决机器学习所面临的壁垒,机器学习仍然主要依赖监督学习,还没有跨越弱人工智能。因此对于未来,我们有理由期望研究者在机理上做出突破从而大幅提升人工智能的应用潜能。

参考文献

[1] https://blog.csdn.net/xiaotiig/article/details/***3

[2] https://blog.csdn.net/Oscar2018/article/details/***

[3] https://blog.csdn.net/Oscar2018/article/details/***

[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]

以上为《人工智能小论文》的无排版文字预览,完整格式请下载

下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

图片预览