以下为《5.3.2 函数的极值与导数课件》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
5.3.2函数的极值与导数abxyO定义 一般地, 设函数 f (x) 在点x0附近有定义, 如果对x0附近的所有的点, 都有我们就说 f (x0)是 f (x)
的一个极大值, 点x0叫做函数 y = f (x)的极大值点. 反之, 若 , 则称 f (x0) 是 f (x) 的一个极小值, 点x0叫做函数 y = f (x)的极小值点. 极小值点、极大值点统称为极值点, 极大值和极小值统称为极值. 观察上述图象,试指出该函数的极值点与极值,并说出哪些是极大值点,哪些是极小值点.(1)函数的极值是就函数在某一点附近的小区间而言的,在函数的整个定义区间内可能有多个极大值或极小值(2)极大值不一定比极小值大(3)可导函数f(x),点是极值点的必要条件是在该
点的导数为0例:y=x3练习1 下图是导函数 的图象, 试找出函数 的极值点, 并指出哪些是极大值点, 哪些是极小值点.abxyx1Ox2x3x4x5x6因为 所以例1 求函数 的极值.解:令 解得 或当 , 即 , 或 ;
当 , 即 .当 x 变化时, f (x) 的变化情况如下表:– ++单调递增单调递减单调递增所以, 当 x = –2 时, f (x)有极大值 28 / 3 ;当 x = 2 时, f (x)有极小值 – 4 / 3 .求解函数极值的一般步骤:
(1)确定函数的定义域
(2)求方程f’(x)=0的根
(3)用方程f’(x)=0的根,顺次将函数的定义域分成若干个开区间,并列成表格
(4)由f’(x)在方程f’(x)=0的根左右的符号,来判断f(x)在这个根处取极值的情况练习2求下列函数的极值:解: 令 解得 列表:+单调递增单调递减– 所以, 当 时, f (x)有极小值练习2求下列函数的极值:解: 解得 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 有极小值?
(3)函数 有极大值?
(4)函数 有极小值?当堂练习P98 T4下图是导函数 的图象, 在标记的点中, 在哪一点处(1)导函数 有极大值?
(2)导函数 有极小值?
(3)函数 有极大值?
(4)函数 有极小值?或布置作业 P98 T5[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]
以上为《5.3.2 函数的极值与导数课件》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。