第4章 相交线与平行线(知识点汇总XXXXX湘教7下)

本文由用户“tianya007”分享发布 更新时间:2022-03-15 09:40:39 举报文档

以下为《第4章 相交线与平行线(知识点汇总XXXXX湘教7下)》的无排版文字预览,完整格式请下载

下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

第四章 相交线与平行线

一、知识网络结构

二、知识要点

1、在同一平面内,两条直线的位置关系有 两 种: 相交 和 平行 , 垂直 是相交的一种特殊情况。

2、在同一平面内,不相交的两条直线叫 平行线 。如果两条直线只有 一个 公共点,称这两条直线相交;如果两条直线 没有 公共点,称这两条直线平行。

3、两条直线相交所构成的四个角中,有 公共顶点 且有 一条公共边 的两个角是邻补角。邻补角的性质: 邻补角互补 。如图1所示, 与 互为邻补角, 与 互为邻补角。 + = 180°; + = 180°; + = 180°; + = 180°。

/

4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的 反向延长线 ,这样的两个角互为 对顶角 。对顶角的性质:对顶角相等。如图1所示, 与 互为对顶角。 = ; = 。

5、两条直线相交所成的角中,如果有一个是 直角或90°时,称这两条直线互相垂直,其中一条叫做另一条的垂线。如图2所示,当 = 90°时, ⊥ 。

/

垂线的性质:

性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

性质3:如图2所示,当 a ⊥ b 时, = = = 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 = 180°; + = 180°。

性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则   ∥   。

8、平行线的判定:

/

判定1:同位角相等,两直线平行。如图5所示,如果 =  或 =  或 =  或 = ,则a∥b。

判定2:内错角相等,两直线平行。如图5所示,如果 =  或 = ,则a∥b 。

判定3:同旁内角互补,两直线平行。如图5所示,如果 + = 180°; + = 180°,则a∥b。

判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则   ∥   。

9、判断一件事情的语句叫命题。命题由 题设 和 结论 两部分组成,有 真命题 和 假命题 之分。如果题设成立,那么结论 一定 成立,这样的命题叫 真命题 ;如果题设成立,那么结论 不一定 成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

平移后,新图形与原图形的 形状 和 大小 完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]

以上为《第4章 相交线与平行线(知识点汇总XXXXX湘教7下)》的无排版文字预览,完整格式请下载

下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

图片预览