以下为《二次函数的图象与性质教学设计》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
26.2 二次函数的图象与性质
二次函数y=ax2+bx+c的图象与性质
一、教学目标
知识与技能:使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。
过程与方法:让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。
情感态度与价值观:培养学生观察、思考、归纳的良好思维习惯。
二、重点:
确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质
三、难点:
正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质
四、教具准备:
课件、课外资料。
五、教学过程:
(一)、提出问题
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的,见P8图26.2.2)
2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?
(函数y=2(x-1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P11图26.2.3)
3.函数y=2(x-1)2+1的图象与函 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 题5:你能说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?
(函数y=-(x-1)2+2的图象可以看成是将函数y=-x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)
六、作业
作业优化设计
1.巳知函数y=-x2、y=-x2-1和y=-(x+1)2-1
(1)在同一直角坐标系中画出三个函数的图象;
(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;
(3)试说明:分别通过怎样的平移,可以由抛物线y=-x2得到抛物线y=-x2-1和抛物线y=(x+1)2-1;
(4)试讨论函数y=-(x+1)2-1的性质。
2.已知函数y=6x2、y=6(x-3)2+3和y=6(x+3)2-3。
(1)在同一直角坐标系中画出三个函数的图象;
(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;
(3)试说明,分别通过怎样的平移,可以由抛物线y=6x2得到抛物线y=6(x-3)2+3和抛物线y=6(x+3)2-3;
(4)试讨沦函数y=6(x+3)2-3的性质;
3.不画图象,直接说出函数y=-2x2-5x+7的图象的开口方向、对称轴和顶点坐标。
4.函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关
七、教学反思
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《二次函数的图象与性质教学设计》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。