以下为《大学硕士研究生入学考试《数学》(含高等数学、线性代数) 考试大纲》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
华中科技大学硕士研究生入学考试《数学》(含高等数学、线性代数) 考试大纲
科目代码(602)
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 简单应用问题的函数关系的建立。
数列极限与函数极限的定义以及它们的性质 函数的左极限与右极限 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理)
考试要求
1.理解函数的概念,掌握函数的表示方法。
2.了解函数的奇偶性、单调性、周期性和有界性。
3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。
4.掌握基本初等函数的性质及其图形。
5.会建立简单应用问题中的函数关系式。
6.理解极限的概念,理解函数的左极限与右极限的概念,以及极限存在与左、右极限之间的关系。
7.掌握极限的性质及四则运算法则。
8.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。
9.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
10.理解函数的连续性的概念(含左连续与右连续),会判别函数间断点的类型。
11.了解连续函数的性质和初等函数的连续性,***有界性、最大值和最小值定理、介值定理),并会应用这些性质。
二、一元函数微分学考试内容
考试内容
导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数和微分的四则运算 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数的概念 简单函数的n阶导数 微分在近似计算中的应用 罗尔(Rolle)定理 拉格朗日(Lagrange)中值定理 柯某某(Cauchy)中值定理 泰勒(Taylor)定理 洛必达(L’Hospital)法则 函数的极值及其求法 函数单调性 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数最大值和最小值的求法及简单应用 弧微分 曲率的概念 两曲线的交角。
考试要求
1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系。
2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分,了解微分在近似计算中的应用。
3.了解高阶导数的概念,会求简单函数的n阶导数。
4.会求分段函数的一阶、二阶导数。
5.会求隐函数和由参数方程所确定的函数的一阶、二阶导数,会求反函数的一阶、二阶导数。
6.理解并会用罗尔定理、拉格朗日中值定理和泰勒定理。
7.了解并会用柯某某中值定理。
8.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值方法,掌握函数最大值和最小值的求法及其简单应用。
9.会用导数判断函数图形的凹凸性和拐点,会求函数图形的水平、铅直和斜渐近线,会描绘函数的图形。
10.掌握用洛必达法则未定式极限的方法。
11.了解曲率和曲率半径的概念,会计算曲率和曲率半径,会求两曲线的交角。
三、一元函数积 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 。
六、二次型
考试内容
二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的标准形和规范形 用正交变换和配方法化二次型为标准形 二次型和对应矩阵的XX性及其判别法。
考试要求
1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解二次型的标准型、规范形的概念,了解惯性定理。
2.掌握用正交变换化二次型为标准形的方法,了解用配方法化二次型为标准形的方法。
3.了解二次型和对应矩阵的XX性及其判别法。
试卷结构
(一)内容比例
高等数学 约70%;线性代数 约30%;
(二)题型比例
填空题与选择题 约30%
解答题(包括证明题) 约70%
总分:150分
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《大学硕士研究生入学考试《数学》(含高等数学、线性代数) 考试大纲》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。