12.2 第4课时 “斜边、直角边”1导学案

本文由用户“alanchen4140”分享发布 更新时间:2021-12-24 20:12:11 举报文档

以下为《12.2 第4课时 “斜边、直角边”1导学案》的无排版文字预览,完整格式请下载

下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

第4课时 “斜边、直角边”

/

1.理解并掌握三角形全等的判定方法——“斜边、直角边”.(重点)

2.经历探究“斜边、直角边”判定方法的过程,能运用“斜边、直角边”判定方法解决有关问题.(难点)                

/

一、情境导入

舞台背景的形状是两个直角三角形,工作人员想知道这两个直角三角形是否全等,但每个三角形都有一条直角边被花盆遮住无法测量.

(1)你能帮他想个办法吗?

(2)如果他只带了一个卷尺,能完成这个任务吗?

工作人员测量了每个三角形没有被遮住的直角边和斜边,发现它们分别对应相等,于是他就肯定“两个直角三角形是全等的”,你相信他的结论吗?

/

二、合作探究

探究点一:应用“斜边、直角边”判定三角形全等

/ 如图,已知∠A=∠D=90°,E、F在线段BC上,DE与AF交于点O,且AB=CD,BE=CF.求证:Rt△ABF≌Rt△DCE.

/

解析:由题意可得△ABF与△DCE都为直角三角形,由BE=CF可得BF=CE,然后运用“HL”即可判定Rt△ABF与Rt△DCE全等.

证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE.∵∠A=∠D=90°,∴△ABF与△DCE都为直角三角形.在Rt△ABF和Rt△DCE中,∵

∴Rt△ABF≌Rt△DCE(HL).

方法总结:利用“HL”判定三角形全等,首先要判定这两个三角形是直角三角形,然后找出对应的斜边和直角边相等即可.

探究点二:“斜边、直角边”判定三角形全等的运用

【类型一】 利用“HL”判定线段相等

/ 如图,已知AD,AF分别是两个钝角△ABC和△ABE的高,如果AD=AF,AC=AE.求证:BC=BE.

/

解析:根据“HL”证Rt△ADC≌Rt△AFE,得CD=EF,再根据“HL”证Rt△ABD≌Rt△ABF,得BD=BF,最后证明BC=BE.

证明:∵AD,AF分别是两个钝角△ABC和△ABE的高,且AD=AF,AC=AE,∴Rt△ADC≌Rt△AFE(HL).∴CD=EF.∵AD=AF,AB=AB,∴Rt△ABD≌Rt△ABF(HL).∴BD=BF.∴BD-CD=BF-EF.即BC=BE.

方法总结:证明线段相等可通过证明三角形全等解决,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.

【类型二】 利用“HL”判定角相等或线段平行

/ 如图,AB⊥BC,AD⊥DC,AB=AD,求证:∠1=∠2.

/

解析:要证角相等,可先证明全等.即证Rt△ABC≌Rt△ADC,进而得出角相等.

证明:∵AB⊥BC,AD⊥DC,∴∠B=∠D=90°,∴△ABC与△ACD为直角三角形.在Rt△ABC和Rt△ADC中,∵∴Rt△ABC≌Rt△ADC(HL),∴∠1=∠2.

方法总结:证明角相等可通过证明三角形全等解决.

【类型三】 利用“HL”解决动点问题

/ 如图,有一直角三角形ABC,∠C=90°,AC=10cm,BC=5cm,一条线段PQ=AB,P、Q两点分别在AC上和过A点且垂直于AC的射线AQ上运动,问P点运动到AC上什么位置时△ABC才能和△APQ全等?

/

解析:本题要分情况讨论:(1)Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.(2)Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.

解:根据三角形全等的判定方法HL可知:(1)当P运动到AP=BC时,∵∠C=∠QAP=90°.在Rt△ABC与Rt△QPA中,∵∴Rt△ABC≌Rt△QP 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 1.斜边、直角边:斜边和一条直角边分别相等的两个直角三角形全等.简记为“斜边、直角边”或“HL”.

2.方法归纳:

(1)证明两个直角三角形全等的常用方法是“HL”,除此之外,还可以选用“SAS”“ASA”“AAS”以及“SSS”.

(2)寻找未知的等边或等角时,常考虑转移到其他三角形中,利用三角形全等来进行证明.

/

本节课的教学主要通过分组讨论、操作探究以及合作交流等方式来进行.在探究直角三角形全等的判定方法——“斜边、直角边”时,要让学生进行合作交流.在寻找未知的等边或等角时,常考虑将其转移到其他三角形中,利用三角形全等来进行证明.此外,还要注重通过适量的练习巩固所学的新知识.

/

[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]

以上为《12.2 第4课时 “斜边、直角边”1导学案》的无排版文字预览,完整格式请下载

下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

图片预览