以下为《初中数学七年级上册3.2》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
3.2 实数
一、教学目标
1、从感性上认可无理数的存在,并通过探索说出无理数的特征,弄清有理数与无理数的本质区别,了解并掌握无理数、实数的概念以及实数的分类,知道实数与数轴上的点的一一对应关系。
2、让学生体验用有理数估计一个无理数的大致范围的过程,掌握 “逐次逼近法”这种对数进行分析、猜测、探索的方法
3、培养学生勇于发现真理的科学精神,渗透“数形结合”及分类的思想和对立统一、矛盾转化的辨证唯物主义观点
二、教学重点
无理数、实数的意义,在数轴上表示实数。
三、教学难点
无理数与有理数的本质区别,实数与数轴上的点的一一对应关系。
四、教具准备
多媒体,投影仪
五、教学过程
1、复习旧知,揭示矛盾,引入概念
回顾书本 3 .1探究活动(图3.2),复习前面所学的有理数的分类, 既然在1与2之间就不是整数,也不是分数,因为如果是分数的话它的平方也应是分数,也就是说 不是有理数,但由此题可知确实是存在的,同时π也是如此。
出现矛盾以后,本课以为例,从开始,来探索无理数的特征,学习实数。
1.2联系实际创设问题情境:
如果你是布料销售店的售货员,假设我要买剪米某某,你将会给我剪多少比较合适?学生能从上节的图3-2中估计在1与2之间,引导学生借助计算器进行合作学习:
教学过程
根据上节课 1<<2,确定√2=1.…确定小数点后第一位数计算1.12 1.22 1.32 1.42 1.52 1.42 =1.96 <2 1.52 =2.25>2 就不必再算下去了 很明显1.4<<1.5 。也有学生可根据以往经验马上由1.42 =1.96 <2 1.52 =2.25>2得到1.4<<1.5。
根据以上得:=1.4…再求下一位 计算1.412 1.422 等 =1.41… 到此为止,能解决上面问题, 大约剪1.4 米 或1.41米就可以了。继续探索特征,得到无理数概念
以上得到的1.4,1.41仅是的近似值,究竟是多少?在解决此问题后, 又出现了新疑点。这样激发学生沿着以XX路继续合作学习,结合书本p71的表格,探索特征。再问:通过以上的探索同学们有什么感受?体验到了什么?学生能在对有理数的已有认知的基础上,知道确实不同于前面所学的有理数,总结的特征:无限、不循环,得到无理数的概念。
(以上学生合作探索特征的过程,让学生体验无理数是怎样一个数,同时掌握求无理数近似的方法。)
例说出无理数,巩固对无理数的理解
课本p73 课内练习2
掌握用有理数逐步逼近无理数,从而求出无理数近似值的方法
叙述数史,剖析概念,扩展数集
讲述故事,介绍无理数的来历
师问:当你们看到“有理数”与“无理数”这两个词时,你们的第一感觉是怎么理解的? 有生会答:“有道理的数”与“无道理的数”。
师:确实会有我们这种想法,这不,为此,它们还发动了战争呢?(屏幕显示故事,学生讲述)
(教师简单说明无理数的来历,培养学生勇于发现真理的科学精神)
问:听了故事后你们有什么看法,你认为他们根本的区别在哪里?(学生讨论)
教师小结:“无理数”和“有理数”仅是名称而已,据说是清朝末年从日本引进时,翻译的讹误,因此不能从词义上理解,它们根本的区别,就是凡是有理数,都可以化成两个整数之比(可看成一个分数),而无理数,无论如何也不能化成两个整数之比(不能化为分数),从而突破本课第一个难点。
实数的概念: 有理数和无理数统称为实数
练习讨论,反馈调 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 :用有理数逼近无理数,求无理数的近似值;数形结合的数学思想
启发学生提出新的疑问,培养学生创造性思维
从谈起,我们还可以谈些什么?
例如: 其他无理数?圆周率π的近似值?由出发,可以造出哪些无理数?无理数与有理数的和、差、积等一定是无理数吗?无理数与无理数的和、差、积等一定是无理数吗?等等一系列问题,有待于我们进一步探索、研究
布置作业
A组必做, B、C组选做
教学反思
本课精心设计问题情景,积极引导,启发学生进行概念剖析,从谈起,让学生合作探究其特征 ,进而得到实数的概念,实现了数的范围的进一步扩展 ,尽量让学生亲身体验知识的形成过程,同时掌握分析、解决问题的思想和方法。
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《初中数学七年级上册3.2》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。