锐角三角函数教学设计

本文由用户“junbo_wake”分享发布 更新时间:2020-12-31 14:20:56 举报文档

以下为《锐角三角函数教学设计》的无排版文字预览,完整格式请下载

下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

《锐角三角函数》(第一课时)教学设计

教学目标

1.经历探索直角三角形中边角关系的过程,理解正切的意义。

2.探索并掌握正切概念,能根据直角三角形中的边角关系,进行简单计算。

3.经历锐角正切意义的探索过程,提高学生的分析和归纳能力,并体会从特殊到一般的研究问题的思路和数形结合的思想方法。

教学重点:正切概念的探究

教学难点:理解正切概念

教学过程:

一、温故知新 感知整章

1.对于直角三角形的边角关系,我们已经研究了什么?

2.直角三角形边角之间有怎样的关系?

二、源于生活,体会新知

活动一:你能比较哪个梯子更陡吗?

(1)在图(1)中,梯子AB和EF哪个更陡?你是怎样判断的?

(2)在图(2)中,梯子AB和EF哪个更陡?

(3)在图(3)中,梯子AB和EF哪个更陡?

(4)在图(4)中,梯子AB和EF哪个更陡?

三、探究归纳 初识新知

活动二:想一想

如图,小明想通过测量和,算出它们的比,来说明梯子的倾斜程度;而小亮则认为,通过测量及,算出它们比,也能说明梯子的倾斜程度。你同意小亮的看法吗?

①什么关系?为什么?

②如果改变在梯子上的位置呢?

③通过几何画板动态演示,改变在梯子上的位置,观察∠A对边和邻边的比。由此你能总结得到什么结论?

④通过几何画板动态演示,改变∠A的大小,∠A的对边和邻边的比又怎样呢?

⑤你觉得直角三角形中∠A的大小和对边与邻边的比符 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。

归纳:正切值只与锐角∠A大小有关,与锐角所在的三角形大小无关。锐角∠A大小不变,正切值不变,锐角∠A改变,正切值改变。

活动三:梯子倾斜程度与的关系

那么当∠A发生变化时,的值是如何变化的?

通过几何画板再次演示,学生观察得到结论。

结论:∠A越大,值越大,梯子越陡。

设计意图:通过问题的解决,自然过渡到梯子的倾斜程度与∠A的大小关系,通过几何画板再次演示,帮助学生理解。

例1:如图,表示甲乙两个自动扶梯,哪一个自动扶梯比较陡?

活动四:正切与生活的联系

正切也经常用来描述山坡的坡度。坡角:坡面与水平面的夹角α称为坡角。坡度:坡面的铅直高度与水平宽度的比称为坡度i。坡度等于坡角的正切.

如:有一山坡在水平方向上每前进100m就升高60m,那么山坡的坡度i(即)就是:

五、能力提升 用于生活

1.在Rt△ABC中,∠C=90°,三边长分别为a b c,求和。

追问:①∠A和∠B什么关系?

②和有什么关系?

③你能总结得到什么结论?

归纳:互余的两个角的正切值互为倒数。

2.如图,某山坡坡脚的点B距坡顶的点A 100m后,坡顶A到山脚下的垂直距离是60m. 小彭欲驾驶一辆吉普牧马人从坡底开往坡顶,已知吉普牧马人的最大爬坡度是0.7,请问小彭能驾驶此车开上坡顶吗? 六、体验感知 完善学习

①你学到了什么?

②你感受到了什么?

③你还想继续知道什么?

④你有什么不明白?

[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]

以上为《锐角三角函数教学设计》的无排版文字预览,完整格式请下载

下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。

图片预览