以下为《中考 二次函数题型分类复习总结》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
二次函数考点分类复习
知识点一:二次函数的定义
考点:二次函数的二次项系数不为0,且二次函数的表达式必须为整式。
备注:当b=c=0时,二次函数y=ax2是最简单的二次函数.
1、下列函数中,是二次函数的是 .
①y=x2-4x+1; ②y=2x2; ③y=2x2+4x; ④y=-3x;
⑤y=-2x-1; ⑥y=mx2+nx+p; ⑦y =; ⑧y=-5x。
2、在一定条件下,若物体运动的路程s(米)与时间t(秒)的关系式为s=5t2+2t,则t=4秒时,该物体所经过的路程为 。
3、若函数y=(m2+2m-7)x2+4x+5是关于x的二次函数,则m的取值范围为 。
课后练习:
(1)下列函数中,二次函数的是( )
A.y=ax2+bx+c B。 C。 D。y=x(x—1)
(2)如果函数是二次函数,那么m的值为
知识点二:二次函数的对称轴、顶点、最值
1、二次函数 ,当时抛物线开口向上顶点为其最低点;当时抛物线开口向下顶点为其最高点
2、对于y=ax2+bx+c而言,其顶点坐标为( , ).对于y=a(x-h)2+k而言其顶点坐标为( , )。二次函数用配方法或公式法(求h时可用代入法)可化成:的形式,其中h= ,k=
练习:
1.抛物线y=2x2+4x+m2-m经过坐标原点,则m的值为 。
2.抛物y=x2+bx+c线的顶点坐标为(1,3),则b= ,c= .
3.抛物线y=x2+3x的顶点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
4.已知抛物线y=x2+(m-1)x-的顶点的横坐标是2,则m的值是_ .
5.若二次函数y=3x2+mx-3的对称轴是直线x=1,则m= 。
6.当n=______,m=______时,函数y=(m+n)xn+(m-n)x的图象是抛物线,且其顶点在原点,此抛物线的开口________.。
7.已知二次函数y=x2-4x+m-3的最小值为3,则m= 。
知识点三:函数y=ax2+bx+c的图象和性质
1.抛物线y=x2+4x+9的对称轴是 。
2.抛物线y=2x2-12x+25的开口方向是 ,顶点坐标是 。
3.试写出一个开口方向向上,对称轴为直线x=-2,且与y轴的交点坐标为(0,3)的抛物线的解析式 。
4.通过配方,写出下列函数的开口方向、对称轴和顶点坐标:
(1)y=x2-2x+1 ; (2)y=-3x2+8x-2; (3)y=-x2+x-4
知识点四:函数y=a(x-h)2的图象与性质
1.填表:
抛物线
开口方向
对称轴
顶点坐标
2.已知函数y=2x2,y=2(x-4)2,和y=2(x+1)2。
(1)分别说出各个函数图象的开口方、对称轴和顶点坐标。
(2)分析分别通过怎样的平移。可以由抛物线y=2x2得到抛物线y=2(x-4)2和y=2(x+1)2?
3.试写出抛物线y=3x2经过下列平移后得到的抛物线的解析式并写出对称轴和顶点坐标。
(1)右移2个单位;(2)左 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 数y(件)是价格X的一次函数.
(1)试求y与x的之间的关系式.
(2)在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少?(总利润=总收入-总成本)
2、抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2。(1)求A、B 两点的坐标及直线AC的函数表达式;(2)P是线段AC上一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
3、已知抛物线与x轴没有交点. (1)求c的取值范围;
(2)试确定直线y=cx+l经过的象限,并说明理由.
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《中考 二次函数题型分类复习总结》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。