以下为《等比数列的有关概念》的无排版文字预览,完整格式请下载
下载前请仔细阅读文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。
1.等比数列的有关概念
(1)定义:如果一个数列从第2项某某,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为=q.
(2)等比中项:如果a,G,b成等比数列,那么G叫做a与b的等比中项.即G是a与b的等比中项?a,G,b成等比数列?G2=ab.
2.等比数列的有关公式
(1)通项公式:an=a1qn-1.
(2)前n项和公式:Sn=
3.等比数列与指数型函数的关系
当q>0且q≠1时,an=·qn可以看成函数y=cqx,其是一个不为0的常数与指数函数的乘积,因此数列{an}各项所对应的点都在函数y=cqx的图象上;
对于非常数列的等比数列{an}的前n项和Sn==-qn+,若设a=,则Sn=-aqn+a(a≠0,q≠0,q≠1).由此可知,数列{Sn}的图象是函数y=-aqx+a图象上一系列孤立的点.
对于常数列的等比数列,即q=1时,因为a1≠0,所以Sn=na1.由此可知,数列{Sn}的图象是函数y=a1x图象上一系列孤立的点.
【素养清单?常用结论】
设数列{an}是等比数列,Sn是其前n项和.
(1)通项公式的推广:an=am·qn-m(n,m∈N*).
(2)若m+n=p+q,则aman=apaq;若2s=p+r,则apar=a,其中m,n,p,q,s,r∈N*.
(3)ak,ak+m,ak+2m,…仍是等比数列,公比为qm(k,m∈N*).
(4)若数列{an},{bn}是两个项数相同的等比数列,则数列{ban},{pan·qbn}和也是等比数列.
(5)若数列{an}的项数为2n,则=q;若项数为2n+1,则=q.
【真题体验】
1.【2019年高考全国III卷理数】已知各项均为正数的等比数列/的前4项某某15,且/,则/( )
A.16 B.8
C.4 D.2
2.【2019年高考全国I卷理数】记Sn为等比数列{an}的前n项和.若/,则S5=___________.
3.【2018年高考浙江卷】已知/成等比数列,且/.若/,则( )
A./ B./
C./ D./
4.【2017年高考全国II卷理数】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )
A.1盏 B.3盏
C.5盏 D.9盏
5.【2017年高考全国III卷理数】等差数列/的首项为1,公差不为0.若a2,a3,a6成等比数列,则/前6项的和为( )
A./ B./
C.3 D.8
6.【2018年高考全国I卷理数】记/为数列/的前/项和,若/,则/___________.
【考法拓展?题型解码】
考法一 等比数列基本量的求解
归纳总结:解决等比数列有关问题的常用思想方法
(1)方程的思想:等比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)求出关键量a1和q,问题便可迎刃而解.
(2)分类讨论的思想:等比数列的前n项和公式涉及对公比q的分类讨论,将q分 内容过长,仅展示头部和尾部部分文字预览,全文请查看图片预览。 点An(,)在双曲线y2-x2=1上,数列{bn}中,点(bn,Tn)在直线y=-x+1上,其中Tn是数列{bn}的前n项和.
(1)求数列{an}的通项公式;
(2)求证:数列{bn}是等比数列.
13.(2019·*_**定义在(-∞,0)∪(0,+∞)上的函数f(x),如果对于任意给定的等比数列{an},{f(an)}仍是等比数列,则称f(x)为“保等比数列函数”.现有定义在(-∞,0)∪(0,+∞)上的如下函数:①f(x)=x2;②f(x)=2x;③f(x)=;④f(x)=ln |x|.
则其中是“保等比数列函数”的f(x)的序号为________.
[文章尾部最后300字内容到此结束,中间部分内容请查看底下的图片预览]请点击下方选择您需要的文档下载。
以上为《等比数列的有关概念》的无排版文字预览,完整格式请下载
下载前请仔细阅读上面文字预览以及下方图片预览。图片预览是什么样的,下载的文档就是什么样的。